Loading...
SSAT Middle Level
Quantitative (Math)

Finding Roots of a Quadratic Function

Hard Algebra Functions And Patterns

Let the function $f(x)$ be defined as follows:

$f(x) = 2x^2 - 3x + 1$

For what value of $x$ does the function $f(x)$ equal zero? You can use the quadratic formula given by:

$x = \f\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

where $a$, $b$, and $c$ are the coefficients of the quadratic equation $ax^2 + bx + c = 0$.

Hint

Submitted10.0K
Correct8.0K
% Correct80%