In a certain city, there are two types of parking meters: Type A and Type B. Type A meters have a probability of 0.6 of failing during any given hour, while Type B meters have a probability of 0.3 of failing during the same hour.
A parking enforcement officer encounters 5 random meters, which can be of either type, with the following distribution: 3 meters are Type A and 2 meters are Type B.
What is the probability that at least one of the Type A meters fails during the officer's inspection?