Consider the following data set, which represents the scores of students on a mathematics test:
$$ ext{Scores} = egin{bmatrix} 92 & 85 & 78 & 95 & 88 \ 73 & 81 & 89 & 91 & 84 \ 95 & 82 & 76 & 77 & 90 \\ ext{Total} & & & & \\ ext{Mean} & & & & \ ext{Median} & & & & \ ext{Mode} & & \\ ext{Range} & & & & \\ ext{Standard Deviation} & & & & \\ ext{N} & & & & \ ext{N (Values > 80)} & & & & \\ ext{Total Points Over 90} & & & & \\ ext{5-Score Total} & & & & \ ext{5-Score Mean} & & & & \\ ext{5-Score Median} & & & & \\ ext{5-Score Mode} & & & & \\ ext{5-Score Range} & & & & \\ ext{5-Score Standard Deviation} & & & & \\ ext{5-Score N} & & & & \ ext{5-Score N (Values > 80)} & & & & \\ ext{5-Score Total Points Over 90} & & & & \ ext{5-Score 5-Score Total Points Below 80} & & & & \\ ext{5-Score Average} & & & & \\ ext{5-Score Average 5-Score} & & & & \ ext{5-Score Total Points} & & & & \\ ext{5-Score Mean N >80} & & & & \\ ext{5-Score Mean N<80} & & & & \\ ext{5-Score N=2} & & & & \\ ext{N=1 OR N=0?} & & & &\\ \ ext{Data} & & & & \ ext{A set of 5 scores from a dataset.} & & & & \ ext{This Output will simulate from a given data set from a student.} & & & & \ ext{Valid Means from your student.} & & & & \ ext{Score Maximum?} & & & & \ ext{Minimum?} & & & & \ ext{More Than 90 Points?} & & & & \ ext{No Max?} & & & & \ ext{Show Close?} & & & & \ ext{Show Burst?} & & & & \ ext{Maximum N > 80?} & & & & \ ext{Minimum N<80?} & & & & \ ext{Mode N?} & & & & \ ext{Max? or Min nor Both?} & & & & \ ext{Max. Close or Far?} & & & & \\ ext{Extra?} & & & & \\ ext{Each data point represents } (X - ext{Mean})^2 = ext{Sum of Squares and Standard Deviation.} & & & & \\ ext{Note: Include N in the observations.} & & & & \\ ext{Display Data from Each Student.} & & & & \